题目链接:
题意:
给定一个有向图,求: 1) 至少要选几个顶点。才干做到从这些顶点出发,能够到达所有顶点 2) 至少要加多少条边。才干使得从不论什么一个顶点出发,都能到达所有顶点 顶点数<= 100
求完强连通分量后,缩点,计算每一个点的入度,出度。
第一问的答案就是入度为零的点的个数,
第二问就是max(n,m) // 入度为零的个数为n, 出度为零的个数为m. //kuangbin巨巨分析非常棒!
#include#include #include #include #include using namespace std;const int maxn = 100 + 10;vector G[maxn];int dfn[maxn], low[maxn], belong[maxn], dfs_clock, scc_cnt;stack S;void dfs(int u){ dfn[u] = low[u] = ++dfs_clock; S.push(u); for(int i=0; i
3. DAG上面有多少个入度为0的顶点。问题1的答案就是多少 在DAG上要加几条边。才干使得DAG变成强连通的,问题2的答案就是多少 加边的方法: 要为每一个入度为0的点加入入边,为每一个出度为0的点加入出边 假定有 n 个入度为0的点,m个出度为0的点,怎样加边? 把全部入度为0的点编号 0,1,2,3,4 ....N -1 每次为一个编号为i的入度0点可达的出度0点,加入一条出边,连到编号为(i+1)%N 的那个出度0点, 这须要加n条边 若 m <= n,则 加了这n条边后,已经没有入度0点。则问题解决,一共加了n条边 若 m > n。则还有m-n个入度0点,则从这些点以外任取一点,和这些点都连上边,就可以,这还需加m-n条边。 所以,max(m,n)就是第二个问题的解 此外:当仅仅有一个强连通分支的时候,就是缩点后仅仅有一个点,尽管入度出度为0的都有一个,可是实际上不须要添加清单的项了,所以答案是1。0; */ /* input: 30 18 0 7 21 0 1 4 15 28 0 9 0 10 15 16 0 22 26 0 1 5 10 12 0 3 17 29 0 2 5 17 0 19 23 0 20 0 1 7 15 19 0 0 23 0 0 0 5 18 0 0 7 18 0 17 0 24 0 13 21 0 26 0 0 2 23 30 0 2 9 11 13 14 27 0 2 0 14 0 0 28 0 output: 3 6 */